Chapter 2

Force and Newton's Laws

2-1 Newton's First Law

Force

- Force - A push or pull that one body exerts on another body.
- Examples :

2 Categories of Forces

Forces

Balanced Forces

Unbalanced Forces

Balanced Forces

- Balanced Forces - Forces on an object that are equal in size and opposite in direction.
- Results in the object not accelerating.

Unbalanced Forces

Unbalanced Forces - Forces that are not balanced.

- Results in an acceleration.
- Caused by a "Net Force"

Net Force

Net Force - The sum of the forces on an object when unbalanced forces are applied to it.

- Changes the object's speed, direction or both.
- A soccer ball rolls toward you with a force of 15 Newtons, you kick it in the opposite direction with a force of 50 Newtons. What is the Net Force on the soccer ball ?

Inertia

Inertia - The tendency of an object to resist any change in its motion.

- Examples : a hockey puck on ice, a ball rolling in the hall, a paper sitting on a desk

Inertia and Mass

- An object with more mass will have a higher inertia compared to an object with a lower mass.
- Example : kicking a soccer ball compared to a bowling ball

Newton's $1^{\text {st }}$ Law of Motion

- Also known as the "Law of Inertia".
- An object moving at a constant velocity keeps moving at a constant velocity unless a net force acts on it.
- If an object is at rest, it will remain at rest unless acted upon by a net force.

Friction

Friction - The force that opposes motion between two surfaces that are touching each other.

Amount of Friction

2 Factors:

1. Force pressing the surfaces together.
2. Texture of the surfaces.

3 Examples of Friction

1. Static Friction - the type of friction that prevents an object from moving when a force is applied to it.
2. Sliding Friction - the type of friction that slows an object that is sliding.
3. Rolling Friction - the type of friction that slows an object that is rolling.

2 - 2 Newton's $2^{\text {nd }}$ Law

Newton's $2^{\text {nd }}$ Law of Motion

- Newton's $2^{\text {nd }}$ Law of Motion - A net force acting on an object causes the object to accelerate in the direction of the force.

Force Equation

- Force = Mass * Acceleration
- $\mathrm{F}=\mathrm{ma}$
- Units
- Force - Newtons (N)
- Mass - Kilograms (kg)
- Acceleration - Meters per Seconds Squared (m/s²)

Examples

- How much force is needed to accelerate a 1000 kg car at $3 \mathrm{~m} / \mathrm{s}^{2}$?

$$
\begin{array}{ll}
F=? & F=m a \\
m=1000 \mathrm{~kg} & F=1000 \mathrm{~kg} * 3 \mathrm{~m} / \mathrm{s}^{2} \\
\mathrm{a}=3 \mathrm{~m} / \mathrm{s}^{2} \quad & F=3000 \mathrm{~N}
\end{array}
$$

- How much force is needed to accelerate a 55 kg runner at $6 \mathrm{~m} / \mathrm{s}^{2}$?

$$
\begin{gathered}
F=? \quad F=m a \\
\mathrm{~m}=55 \mathrm{~kg} F=55 \mathrm{~kg} * 6 \mathrm{~m} / \mathrm{s}^{2} \\
\mathrm{a}=6 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~F}=330 \mathrm{~N}
\end{gathered}
$$

- It takes a force of 3000 N to accelerate an empty 1000 kg car at $3 \mathrm{~m} / \mathrm{s}^{2}$. If a 160 kg wrestler is inside the car, how much force will be needed to produce the same acceleration ?

$$
\begin{array}{ll}
F=? & F=m a \\
m=1160 \mathrm{~kg} & F=1160 \mathrm{~kg} * 3 \mathrm{~m} / \mathrm{s}^{2} \\
a=3 \mathrm{~m} / \mathrm{s}^{2} & F=3480 \mathrm{~N}
\end{array}
$$

A 63 kg skater pushes off of the wall with a force of 300 N . What is the skater's acceleration ?
$\mathrm{F}=300 \mathrm{~N} \quad \mathrm{~F}=\mathrm{m} \mathrm{a}$
$\begin{aligned} \mathrm{m} & =63 \mathrm{~kg} \\ \mathrm{a} & =?\end{aligned} \quad \frac{300 \mathrm{~N}}{63 \mathrm{~kg}}=\frac{63}{63 \mathrm{~kg}}{ }^{*} \mathrm{a}$
$4.76 \mathrm{~m} / \mathrm{s}^{2}=\mathrm{a}$

- A 500 g ball is struck with a force of 200 N . What is the acceleration of the ball ?

$$
\begin{array}{lc}
\mathrm{F}=200 \mathrm{~N} & \mathrm{~F}=\mathrm{m} \mathrm{a} \\
\mathrm{~m}=0.5 \mathrm{~kg} & \frac{200 \mathrm{~N}}{0.5 \mathrm{~kg}}=\frac{0.5 / \mathrm{kg}}{0.5 \mathrm{~kg}}{ }^{*} \mathrm{a} \\
\mathrm{a}=? & 400 \mathrm{~m} / \mathrm{s}^{2}=\mathrm{a}
\end{array}
$$

Gravitational Force

- Gravity - A force that every object in the universe exerts on every other object in the universe.
- Everything has gravity.
- If it has mass, it has gravity... even the smallest objects

What determines gravity

There are 2 things that determine Gravitational Force.

1. The mass of the objects.
2. The distance between the objects.

Gravitational Force cont...

The further you are from Earth, the less the amount of gravitational force it has on you.

- Because we are so close to the Earth, its force drowns out all other gravitational forces we might feel.
- All objects accelerate at the same rate due to gravity.
- Acceleration due to gravity $=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Weight

- Weight - The measure of the force of gravity on an object.
- Measured in Newtons (N)
- The greater an objects mass, the greater the gravitational force on the object.
- More mass = more weight

Weight cont...

- Weight depends upon where you are.
- The further you are from the center of the Earth, the lower the gravitational force.
- You weigh less on a tall mountain than at sea level.

Calculating Weight

- Weight = Mass * Acceleration
- $\mathrm{W}=\mathrm{m} \mathrm{a}$

Use Acceleration Due To Gravity ($9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Example

- Mr. Gill has a mass of 87 kg . What is his weight?

$$
\begin{array}{ll}
\mathrm{W}=? & \mathrm{~W}=\mathrm{m} \mathrm{a} \\
\mathrm{~m}=87 \mathrm{~kg} & \mathrm{~W}=87 \mathrm{~kg} * 9.8 \mathrm{~m} / \mathrm{s}^{2} \\
\mathrm{a}=9.8 \mathrm{~m} / \mathrm{s}^{2} & \mathrm{~F}=852.6 \mathrm{~N}
\end{array}
$$

Measuring Forces

- Scales are used to measure weight.
- Scales use the principle of balanced forces to measure weight.
- Your weight is balanced against the force produced by a spring.
- The distance the spring moves is converted to movement on a scale.

Falling Objects

- All objects fall because of gravity.
- The heavier the object, the stronger the force of gravity, but also the stronger the inertia working against the gravity.

Air Resistance

- Air Resistance - Frictional force air exerts on a moving object, acts in the opposite direction to the object's motion.

Factors Affecting Air Resistance

3 factors:

1. Speed
2. Size
3. Shape

Terminal Velocity

Terminal Velocity - the highest velocity that will be reached by a falling object.

- As an object falls, its speed increases.
- The increase in speed increases the air resistance.
- Eventually the force of air resistance equals the force of gravity.
- Equal forces in opposite directions. (acceleration = 0)

Centripetal Force

- In order for acceleration to occur, there must be an unbalanced force.
- Centripetal Force - force acting toward the center of a curved or circular path.

Example

- When a car turns, the centripetal force is the friction between the tires and the roadway causing the car to turn.

Sir Isaac Newton

- Newton believed that a satellite could be launched by shooting it horizontally from a tall mountain.
- Air resistance would slow it and cause it to crash to the ground.

Conventional Method

- Began in the 1950's
- A " Multistage Rocket " lifts the satellite to the desired altitude then a second stage accelerates the satellite to the speed required for orbit.

Center of Mass

- The center of mass is the point in an object that moves as if all the object's mass were concentrated at that point.
- For a symmetrical object, such as a ball, the center of mass is at the object's center.
- However, for any object the center of mass moves as if the net force is being applied there.

2-3 Newton's Third Law of Motion

Newton's 3rd Law of Motion

- Newton's $3^{\text {rd }}$ Law of Motion - When one object exerts a force on a second object, the second object exerts a force on the first object that is equal in size and opposite in direction.

Examples

- Blowing up a balloon and then letting it go.

- Swimming - you push backward on the water, the water push forward on you.
- Jumping - you push down on the ground, the ground pushes back up on you.

Free-Falling

Weight is measured by measuring the force being produced by gravity pushing down on a scale.

- Supposed that the scale is falling at the same rate the object being measured is falling.
- The scale cannot push back against the object on it, so it would read 0 .
- This is what happens to astronauts in orbit.
They are in " free-fall "

